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Abstract

In this paper we will present SDeval, a software project that contains tools for creating and running
benchmarks with a focus on problems in computer algebra. It is built on top of the Symbolic Data project,
able to translate problems in the database into executable code for various computer algebra systems. The
included tools are designed to be very flexible to use and to extend, such that they can be easily deployed even in
contexts of other communities. We also address particularities of benchmarking in the field of computer algebra.

Furthermore, with SDEval, we provide a feasible and automatable way of reproducing benchmarks published
in current research works, which appears to be a difficult task in general due to the customizability of the
available programs.

1 Introduction

Benchmarking of software – i.e. measuring the quality of results and the time resp. memory consumption for a
given, standardized set of examples as input – is a common way of evaluating implementations of algorithms in
many areas of industry and academia. For example, common benchmarks for satisfiability modulo theorems (SMT)
solvers are collected in the standard library SMT-LIB [BST10], and the advantages of various solvers like Z3
[DMB08] or CVC4 [BCD+11] are revealed with the help of those benchmarks.

Considering the field of computer algebra, there could be various benchmarks for the different computation
problems. Sometimes, one can find common problem instances throughout papers dealing with the same topics,
but often there is no standard collection and authors use examples best to their knowledge. For the calculation
of Gröbner bases for example, there is a collection of ideals that often appear when a new or modified approach
accompanied by an implementation is presented (e.g. in [Neu12], the author uses the classical examples Katsura-n,
n∈{11,12}, from [KFI+87] and Cyclic-m, m∈{8,9}, from [BH08] to evaluate his new implementation). Regarding
the computation on that set, the new implementation is then compared to existing and available ones. Note, that
even in computations of Gröbner bases of polynomial ideals there are parameters, defining the concrete instance
of the computation task, such as the ground field and the ordering on monomials. Different computer algebra
systems vary in the implemented functionality, see e.g. [LRP07] for the comparison.

An outstanding systematic and transparent practice has been shown in 2001 by the computer algebra lab, lead
by V. P. Gerdt, of the “Joint Institute For Nuclear Research”, on their website about the progress in research
of computing Janet and Gröbner bases of complicated polynomial systems (http://invo.jinr.ru/).

Nevertheless, in many areas, there is rarely a standard test set, and often the stated timings and computed results
are hard to reconstruct due to different parameters in algorithms that can be set.

Another difficulty is the fair evaluation on how much time is consumed; we will discuss this topic detailed in section 2.
A database containing a collection of various instances of problems coming especially from the computer algebra

community is given by the Symbolic Data project [Grä09]. It started more than 10 years ago, and its team of
developers is steadily extending the collection of problem instances together with precise references to their origins.
Furthermore, the ways of accessing the information in the database and interlinking it with other databases are
being kept up to date. For the latter e.g., the techniques of the so called “semantic web” movement have been
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applied (for more details consider [GNJ13]). The entries are given in the XML data format, which makes it easy
to parse them since almost every programming language nowadays provides XML support. All these arguments
lead to the decision to use Symbolic Data as the underlying database for our project.

We are going to further discuss particularities concerning benchmarking especially for the computer algebra
community and present SDEval, a benchmarking toolbox written in Python covering the following two main tasks:

(i) Creating benchmark sets with the help of the problem instances provided by the Symbolic Data database entries.
(ii) Running benchmarks, with a flexible (i.e. cross-community adaptable) interface that makes reproduction as

simple as possible.
For item (i), we implemented for certain computational problems (e.g. calculation of a Gröbner basis) translators

of respective problem instances from Symbolic Data into executable code for a set of computer algebra systems.
Item (ii) has a broader range of possible uses. First of all, it provides a way to run arbitrary programs on different

inputs. Optionally, it monitors the computations and terminates programs automatically if they exceed a user-given
time or memory limit. The results are generated and presented in a transparant and reproducible way. We envision
for the future that tar-balls of the folders generated by SDEval would be published with computation-focused
papers, so that it becomes easier to verify results of the authors.

There is an intersection between this paper and the preprint [HLN13]. In the latter, the main focus was on
the interconnection between SDEval and the Symbolic Data project, whereas this paper solely focuses on the
functionalities and motivations of SDEval.

This work is structured as follows. Section 2 will deal with the design principles and functionalities of SDEval. We
will elaborate on item (i) and (ii) from above and show how one can use and extend/adjust it to individual computation
problems if needed. We will address related work in Section 3 and finish by outlining future tasks in Section 4.

The current version of the presented toolkit SDEval can be found at github.com/ioah86/symbolicdata. The
latest information on Symbolic Data are available at http://symbolicdata.org.

Note, that on our own we have used SDEval in our studies with respect to several ongoing projects, see e.g.
[CCH+11], [HL13] and [GHL14].

2 SDEval

2.1 Particularities about Benchmarking in Computer Algebra

2.1.1 Challenges.

Writing benchmarks in the field of computer algebra differs from other benchmarking tasks. A collection of appearing
challenges is the following.
• Sometimes, the results of computations are not unique; that is, several non identically equal outputs can be

equivalently correct. It is not always possible to find a canonical form for an output. Even if this is the case,
the transformation of output into the canonical form can be quite costly. Moreover, the latter transformation
is not necessarily provided by every single computer algebra system.
• Related to the previous item: If an answer is not unique, then the evaluation of the correctness of the output is

often far from trivial. In some cases the correctness-evaluation of certain results is even subject of on-going research.
• The field of computer algebra deals with a large variety of topics, even though it can be divided into classes of

areas where certain common computational problems do appear. Thus, there need to be collections of benchmarks,
optimally one as a standard for each class. The benchmark creation process should be flexible to be applicable
in a wide range of areas.
• Considering input formats, many computer algebra systems are going their own ways, i.e. for many computation

problems, telling the respective system what to calculate differ a lot. The source of this problem is that the
way of representing certain given mathematical objects may also not be unified across the community.

We tried to address these challenges as much as possible when designing our toolkit.
In particular, the first item is something that differs the creation of benchmarks for computer algebra problems

from most other fields of studies.
The second item leads to one of the design decisions we made for SDEval, namely that we provide an interface

for decision routines, and partially include some of them as examples how such routines could be added. Then,
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a particular community can deal with this question based on their problems, and provide SDEval with the
information on what routine to call to obtain an answer.

2.1.2 Correct and Feasible Time Measurement.

Another seemingly trivial, yet controversial question is the correct time measure of computations, as mentioned
in the introduction. It is very common in computer algebra systems to provide a time measuring functionality,
and many of the timings provided in papers were calculated using those commands, since it is easily available.

Nevertheless, this methodology is questionable. Often one cannot verify their validity due to e.g. their source not
being open. Furthermore, sometimes run-time-benefiting calculations are already done during the initialization phase;
therefore one has to specify clearly where to start the provided time measurement. If one makes use of the implemented
techniques, every program has to be analyzed in detail to find the correct spot to start the time counting in order
to make the comparison fair. Hence, the use of system-provided time measuring is not practical for fair comparisons.

A widely spread method in software development is to run programs with the time command provided with
Unix based operating systems (a similar program for Microsoft Windows is timeit, contained in Microsofts
Server Resource Toolkit). Even though the time for parsing input – which is in general not the complex
part about the computations done in computer algebra – would then also being taken into account, we decided
that this method is the best choice for SDEval.

It has also another benefit: We are interested in extracting the timing results from the output files in an
automated way, and there is a standard for providing timings given by the IEEE standard IEEE Std 1003.2-1992

(‘‘POSIX.2’’)); the time command can be instrumented using a parameter to provide its output according to
this standard. Arranging this format for the output with the help of the included time measurement mechanisms
in computer algebra systems can be regarded as an infeasible requirement for a user.

2.2 The Creation of a Benchmark Suite

2.2.1 Basic Terminology.

Let us start with defining some terminology we want to use throughout this section. This will serve the purpose
of a better understanding of the design principles of SDEval.
Definition 1 (SD-Table) An SD-Table denotes a table with computation problems given in the Symbolic Data
project.

Example 1 (SD-Table) An example for an SD-Table is the table that contains instances of ideals in a polynomial
ring over Q using integer coefficients. These instances can be used e.g. for Gröbner basis computations. The
abbreviation chosen by the Symbolic Data project for this table is IntPS.

Definition 2 (Problem Instance) A problem instance is in our context a representation of a concrete input
– aligned to the Symbolic Data format – that can be used for one or more algorithms. The input values for the
chosen algorithm are contained in this problem instance. A problem instance is always contained in an SD-Table.

Example 2 (Problem Instance) A problem instance is for example the entry Amrhein (an integer polynomial
system taken from [AGK96]) in the SD-Table IntPS. It contains the list of variables’ names and a collection of
polynomials forming the generators of the respective ideal. The concrete system is shown in Figure 1.

Definition 3 (Computation Problem) A computation problem is a concrete and completely specified member
of a family of algorithms. In the context of SDEval, it specifies which computations we want to perform on certain
problem instances.

A selection of computation problems is already provided in the SD-Table COMP. The selection can be extended
by the user.

Example 3 (Computation Problem) A computation problem is for example the computation of a Gröbner
basis given an ideal over a polynomial ring over Q using the lexicographic ordering (abbr. GB Z lp).

Definition 4 (Task) A task consists of a computation problem, a selection of problem instances that are suitable
as inputs for it and a collection of computer algebra systems that implement algorithms for the computation problem.

3



The SDEval Benchmarking Toolkit TBA

Figure 1: The selection of the problem instance from integer polynomial systems

2.2.2 Automated Creation of Benchmarks

Now that we have defined some basic terminology, we will address how a benchmark suite can be generated using
the problem instances given in the SD-Tables. This part of SDEval addresses e.g. developers, who want to compare
the running time of their implementations with those of available software without the necessity of becoming familiar
with all of the available systems. Additionally, it addresses mathematicians who discovered a certain instance for a
computational problem and want to examine what computer algebra systems are able to solve it and what solutions
are provided, as they might differ – depending on the uniqueness of the result – for the different systems.

The SDEval project contains two Python programs that can do this job: ctc.py and create tasks gui.py.
The first one is a command-line program, the second one provides a graphical user interface. Those scripts perform
the following three steps
1. The user chooses from a set of currently supported computation problems.
2. After that, the script collects possible problem instances across the SD-Tables and presents them to the user.

One can pick the desired problem instances that should be included in the benchmark. An illustration of this
step is given in Figure 1.

3. In the last step, besides setting configuration parameters, the user selects from a set of computer algebra systems
for which it is known that they contain implementations of the algorithms that solve the selected computation
problem. Furthermore, the user enters the calling commands to execute those systems on the machine she/he
wants the computation to be run.
After these three steps, the user confirms his or her choices and a folder, from now on referred to as taskfolder,

is generated. This folder containing executable files for the selected computer algebra systems, a Python script to
run all the calculations and some adjustable configuration files (e.g. if the user wants to change call parameters for
a computer algebra system). The taskfolder can then be sent to the machine where the computations are intended
to be run. The concrete structure is given as in Figure 2. As a recent addition, we provided a functionality that
output-analyzing scripts can be included and would automatically be run after completion of the computation
by the computer algebra system. For the supported computation problems and the supported computer algebra
systems, we already provide scripts to do a light analysis on the output. Light analysis in this context means that
it checks whether there is an output or whether the calculation has been terminated.

As outlined before, the creation tool is very flexible and easily extensible. This is due to the object oriented nature
of the code written in Python. One can specify new computation problems, and declare which problem instances
can be chosen as inputs. The respective code for the computer algebra systems can be added in a template-fashion
and does not require familiarity with the particular concepts of Python.

4



Albert Heinle and Viktor Levandovskyy

Figure 2: Folder structure of a taskfolder

+ TaskFolder
| - runTasks.py //For Running the task
| - taskInfo.xml //Saving the Task in XML Structure
| - machinesettings.xml//The Machine Settings in XML form
| + classes //All classes of the SDEval project
| + casSources //Folder containing all executable files
| | + SomeProblemInstance1
| | | + ComputerAlgebraSystem1
| | | | - executablefile.sdc //Executable code for CAS
| | | | - template_sol.py //Script to analyze the output of the CAS
| | | + ComputerAlgebraSystem2
| | | | - executablefile.sdc
| | | + ...
| | + SomeProblemInstance2
| | | + ...
| | + ...

2.3 Running a Benchmark Suite

General Assumption 1: Whereas the creation of the benchmark suite is possible on any machine where Python
is installed, the running routine requires a machine running with a UNIX-like operating system (e.g. Linux or
Mac OS X). We require the time command or some equivalent to be supported, which is in general always the
case on UNIX systems. If one wants to use an equivalent, it needs to be able to provide an output according
to the IEEE standard IEEE Std 1003.2-1992 (‘‘POSIX.2’’).
General Assumption 2: Calculations are run within a terminal. This decision was made due to the fact that
calculations are often sent to a compute server. The connection to that server is in general provided through a
terminal interface.

The running of a benchmark is closely connected to the taskfolder as presented in the previous section. As
one can see in Figure 2, it contains a Python script called runTasks.py. One can either generate an individual
taskfolder using the design principles given in the documentation (see Figure 2 for the general structure), or one
can use a taskfolder generated by the task creation scripts.

If one executes runTasks.py, all the stored scripts for all the contained computer algebra systems will be run
consequently. Using execution parameters, one can instruct the script to do the following:
• Automatically kill a process once a user-provided CPU time limit is reached.
• Automatically kill a process once a user-provided memory consumption limit is reached.
• Run a user-provided number of processes in parallel.
Example 4 Within a taskfolder, a call of
$> python runTasks.py -c240 -m100000000 -j4

will start the execution process. The computer algebra systems are terminated if they take more than four minutes
to run on a problem instance (indicated by -c240, where 240 stands for 240s) or if they use more than approx.
100MB of memory (indicated by -m100000000, where the unit used is bytes). Futhermore, the user wants to have
up to four processes to be run in parallel (indicated by -j4).

The script will create — if not yet existent — a sub-folder within the taskfolder named results. Within
results, there will be a folder named by the time stamp when runTasks.py was executed, where it will store
the results of the computations, some monitoring information about the executed scripts (in form of HTML and
XML files) and files containing information about the machine where the calculation is run on (detailed information
on CPU, memory and operating system).

During the execution process, the user can feel free to terminate manually a running process without having
to restart runTasks.py. It will simply continue with the next waiting program on the next script in the queue. If
an output analyzing script is provided, there will be an error indicated in the HTML resp. XML table afterwards.
Otherwise it will be just marked as “completed”.
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This design of the benchmark execution part has the following benefit. Future authors that execute their
scripts on certain files could provide their taskfolder with the paper they submitted. Then everyone can see the
results (i.e. the outputs of the programs), and verify the timings using the calculated table. Furthermore, they
can run the calculation using runTasks.py after adjusting the configuration to their machine (i.e. replacing
the call commands for the computer algebra systems to those used on one’s machine). We are already adapting
this practice, as one can find the timings of the papers [GHL14] and [HL13] on one of our personal websites
(https://cs.uwaterloo.ca/~aheinle/software_projects.html).

There are further uses of the running routines. As we can see, the execution of the benchmarks is completely
detached from the creation part. This means, that a customized taskfolder can be created, defining programs one
wants to run and provide the inputs and scripts to analyse the outputs inside the casSources folder.

Even though the routines were designed to fit especially the needs of the computer algebra community, the
principles can be used for almost any kind of program.

Another use of the taskfolder and the contained Python-program would be to keep track of the development
process of a software project over time. Executing the runTasks.py script after every version change would reveal
profiling information on the different examples. The profiling can be automatized since the timing-data after every
run is stored in an XML file.

The following examples will illustrate the flexibility and the ease of adjustment of the taskfolder.
Example 5 Assume the user already has a taskfolder. Now, he or she encounters a new, interesting problem
instance and intends to add it to the existing problem instances in the taskfolder. There are two ways of doing it:
• If the user is familiar with every computer algebra system that is used in this taskfolder, the user creates the

respective scripts and adds the problem with the scripts as a new subfolder to casSources. Then, it remains
to add an entry in the taskInfo.xml file. In particular, the entry is given by the following lines:
<probleminstance>

myNewExample

</probleminstance>

After that, the example will be considered with the next run.
• If the user is not familiar with the computer algebra systems in use, then an entry in the database of Symbolic

Data has to be made, which is a simple XML file. After that, the user can use our tool to automatically generate
code for the computer algebra systems that have functionality for the respective computation problem.

Example 6 As in the previous example, assume that the user is already in possession of a taskfolder. Now he or
she wants, in addition to the considered computer algebra systems, benchmark a personal, maybe self written program
on the examples. All the user has to do is then generate for every problem instance in the folder casSources a
subfolder with the respective script. After that, the user specifies how the program is called (parameters, options,
etc.) in the MachineSettings.xml file, registers it in the taskInfo.xml and then the program will be considered
in the next call of runTasks.py.

Example 7 By using SDEval ourselves, we also have encountered the following scenario. We generated a taskfolder
with a large set of problem instances. After running the computer algebra systems on these problem instances, we
realized that currently some cannot be solved in a feasible amount of time. Thus, until there is a new version of
one of the used computer algebra systems, we want to exclude the example when executing runTasks.py. This
can be done by simply commenting out the respective entries in the taskInfo.xml file.

The same can be done to a computer algebra system which performs poorly in comparison to others, i.e. the
user can comment it out until a new version appears.

2.4 Ways of Customizing and Contributing to SDEval

We have seen in the last section that the part of the execution of the respective programs on the problem instances
is highly customizable. There are also ways for customization of the part where one creates benchmarks.
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2.4.1 Adding Templates for Computer Algebra Systems.

The templates can be found in the folder templates in the SDEval project. One simply has to add a new folder
named after the new computer algebra system, and within this folder there must be a file with the function that
generates the code. Optionally, one can also write a script that analyzes the output of the respective computer
algebra system. The function headers themselves can be copied from the other, already available templates, and
one only has to adjust the respective code lines for the computer algebra system one wants to add. For this, there
is no deep knowledge of Python needed. For more details consider the Q&A file in the documentation.
Example 8 Let us consider a possible template for Singular to create executable code to calculate a Gröbner
basis using the lexicographic ordering for a given problem instance coming from the SD-Table IntPS:

def generateCode(vars, basis):

"""

[Documentation lines]

"""

result = """

ring R = 0,(%s),lp;

ideal I = %s;

ideal J = std(I);

print(J);\n\

$

""" % (",".join(vars),",\n".join(basis))

return result

As one can see, all it takes is to create a formatted string, and the respective values will be provided by the input
parameters of the function generateCode, which is the standardized in SDEval.

2.4.2 Adding New Sets of Problem Instances.

Communities can add new tables with problem instances into the SDEval project. For associating it with a given
computation problem, this table has to be added to the supported sets of a computation problem within the project.

2.4.3 Adding New Computation Problems.

New computation problems can be divided into two kinds: the ones where the inputs of respective algorithms can
be derived from existent tables, and the ones where in addition new sets of problem instances have to be added. The
latter category requires more work. For the first one, a user can either choose the way of writing a representative
class for the computation problem within the SDEval project, or contact the project team with an request to
add this computation problem to SDEval due to its importance.

3 Related Work

StarExec [SST12]: This is an infrastructure especially for the logic solver communities. Its main focus is to
provide a platform for managing benchmark libraries and run solver competitions. It is widely used in conferences
based on logic solving to evaluate the benefits of new approaches. Moreover, it includes translators of problems
between the different communities dealing with logic solving. Calculations are always run on the same hardware,
therefore results can directly be compared to all other benchmarks that were run before without taking hardware
differences into consideration. The main difference to our project is that it provides less flexibility for the individual
researcher to define customized computation problems and submit problem instances. Furthermore, as the input
data comes from the logic solver community, the input is standardized and every program accepts the same types
of files. For computer algebra systems, this is different, as stated earlier.
homalg [BR08]: Focusing on constructive homological algebra, the homalg project provides an abstract

structure for abelian categories and is distributed as a package of the computer algebra system GAP [GAP13].
For time critical computations, it allows the usage of other computer algebra systems, i.e. the task is translated
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to the respective system and then executed. This corresponds to the translation part of the SDEval project for
the supported computation problems.

Sage [S+08]: The popular computer algebra system Sage provides as an optional package an interface to the
database of integer polynomial systems (IntPS) of the Symbolic Data project. One can directly load those problem
instances as objects in Sage for further calculations and apply the implemented/wrapped algorithms on them.

4 Conclusion and Future Work

We have presented a benchmarking tool named SDEval, which is built on top of the Symbolic Data project.
In this paper, we addressed the particularities of benchmarking in the field of computer algebra, and with SDEval,
we have presented a flexible, extensible and easy-to-use tool that is designed to accept the challenge.

Moreover, we introduced a practice how the reproduction and the analysis of computations with their timings
would become more feasible in the future. Our approach for that is the taskfolder containing the benchmark
program and the respective input files.

A future task will be to extend the benchmark creation tool to contain both more computer algebra systems
and computation problems. As we have outlined in the paper, these extensions are easy tasks due to the chosen
design of SDEval. The output interpretation routines are very basic at the current stage. In fact, they are just
checking if feasible output can be extracted or not. In the future, we plan to implement thorough tests with which
one can determine the correctness of the outputs. For that, one has to consider every computation problem in
a detailed way and we hope for support from the communities to accomplish that.

Further possibilities and details about how to customize SDEval can be found in the documentation of SDEval.
We would be happy to receive contributions and suggestions from users. But of course, even though we tried to
simplify the processes of contributing as much as we could, it would take time from a person outside the project
to obtain a basic understanding of the whole system. If one is not willing to contribute for this reason, but would
like to see certain additions to the toolkit, please contact the authors. We are very thankful for any kind of input
that can help to extend the functionality of SDEval.

About the timing-results of a benchmark, we plan to write a toolset to analyze these. By now, the timings that
we are collecting are saved within XML-files. One can use this information to draw trends when applying different
versions of computer algebra systems for example. An environment close to a testing-suite is on the agenda of
the SDEval project.

As benchmarking is a very wide-ranged topic, we will continuously consider further challenges – maybe caused by
not yet considered computation problems – that we have not dealt with in the present state. It remains a practically
relevant and interesting problem.
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[GNJ13] Hans-Gert Gräbe, Andreas Nareike, and Simon Johanning. The SymbolicData project–towards a

computer algebra social network. 2013.
[HLN13] Albert Heinle, Viktor Levandovskyy, and Andreas Nareike. SymbolicData: SDEval - benchmarking

for everyone. arXiv preprint arXiv:1310.5551, 2013.
[CCH+11] Svetlana Cojocaru, Alexandru Colesnicov, Albert Heinle, Viktor Levandovskyy, Ludmila Malahov,

Grischa Studzinski, and Victor Ufnarovski. Creation of a knowledge framework for non-commutative computer
algebra. In Proc. 7th International Conference on Microelectronics and Computer Science, Chi̧sinău, Republic
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