Transitive Groups Ontology
An informal description of the Ontology of the Transitive Groups Knowledge Base developed so far.
All Transitive Group instances belong to the owl:Class sd:TransitiveGroup with predicates
Naming scheme
Products
- Groups can be represented as different kind of products. We have the following:
sd:isDirectProductOf
sd:isWreathProductOf
sd:isQuotientOfWreathProductOf
Each of them is a wreath product of two groups. We represent that in RDF as, e.g.,
` sd:left sdtg:Gr3T1 ; sd:right sdtg:Gr3T1 .`
In a first version we used blank nodes to store that information, but due to scoping issues blank nodes are not well supported by different RDF tools.
- (2016-02-21) Hans-Gert Gräbe translated the data to a notion with named nodes as, e.g.,
`sdtg:Gr3T1_Gr3T1 sd:left sdtg:Gr3T1 ; sd:right sdtg:Gr3T1 .`
#### The Transitive Group Fingerprint
A list of all predicates with number of occurences can be generated with a SPARQL-Query:
`PREFIX sd: `<http://symbolicdata.org/Data/Model#>
`select distinct ?p count(?s)`
`where { ?s a sd:TransitiveGroup . ?s ?p ?o .}`
`order by ?p`
We list all properties with some comments:
- sd:hasGenerator String - multiple permutations, e.g., "(1,3,9,7)(2,4,8,6)", "(1,6,9,4)(2,3,8,7)(5,10)", "(2,4,6,8,10)" that generate the group
- sd:hasName String - e.g., "[52:42]22"
- What's the rule for such a naming?
- sd:hasOrder Integer - order of the group
- sd:hasOrderFactorization String - e.g., "2\^3 \* 5\^2"
- sd:hasProperty URI - multiple of sd:abelian, sd:cyclic, sd:even, sd:irreducible, sd:nilpotent, sd:notSolvable, sd:primitive, sd:semiabelian, sd:simple, sd:solvable
- At the moment merely an URI. To be extended to skos:Concept.
- sd:isDirectProductOf sd:WreathProduct
- sd:isQuotientOfWreathProductOf sd:WreathProduct
- sd:isWreathProductOf sd:WreathProduct
- sd:numberOfFieldsInDatabase Integer
- sd:OrderOfCenter Integer - order of the center of the group